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The common “folklore” that Eulerian-Lagrangian methods perform better (are more ac-
curate) with large Courant numbers (large time steps) than with small Courant numbers,
due to numerical dispersion in the latter case, is explained theoretically. A formulation
that does not suffer from large numerical dispersion for any Courant number is outlined.

1. INTRODUCTION

There appears to be a certain amount of misunderstanding in the hydrological modeling
community of the extent to which Eulerian-Lagrangian methods (ELMs) for advection-
dispersion transport equations are numerically dispersive. One often hears that ELMs
perform well for problems in which they can successfully use a large Courant number
(large time step), but that when forced to use a smaller Courant number, and hence more
time steps, they suffer from numerical dispersion introduced by interpolation at each step.
Indeed, some formulations of ELMs behave in precisely this way, and the implementation
and use of such formulations has probably contributed to this perception. What is less
well understood is that other formulations can avoid or substantially mitigate this effect.

The key to the situation is the relationship between averaging in the mass matrix and
averaging in the right-hand-side vector. The mass matrix represents the discrete storage
terms at the new time level. In the right-hand-side vector, advected old-time values are
averaged by interpolation or some analogous process such as numerical integration. If
the averaging on these two sides is balanced, then fronts can be propagated with minimal
numerical dispersion, regardless of the time step. In numerically dispersive formulations,
the mass matrix is typically “lumped,” i.e., diagonal, meaning that there is no averaging
in the mass matrix to balance the averaging on the right-hand side.

This paper will detail the theoretical basis for this discussion, outline a non-dispersive
formulation, and discuss the expected behavior of various formulations of ELMs in some
simple cases.

2. A SIMPLE EULERIAN-LAGRANGIAN METHOD

The concepts to be discussed in this paper are most easily and clearly presented in the
context of a 1-D constant-coefficient advection-dispersion equation, where there are no
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extraneous features. Consider the model problem
Lu=uy+ Vuy — Dugy = uy — Dugy = f(x,t), 0<zxz <L, t>0, (1)

with appropriate initial and boundary conditions that are not relevant here. For the sake
of simplicity, define a uniform grid with Az = L/I, nodes z; = iAz (i = 0,1,...,1),
and cells C; = [2;_1/2, Tit1/2] = [(i — 1/2)Ax, (i + 1/2)Ax] centered around the nodes.
Similarly, define a time increment At, uniform time levels " = nAt (n =0,1,2,...), and
time intervals J" = [¢", t"11].

The space-time 7-directional derivative in (1) is a total (or Lagrangian, substantial, or
material) derivative that follows the advective part of the flow. Along this direction, with
the point (z, ") we associate the point (z*,¢") at the previous time level that flows to
(z,t"*!) under advection (see Figure 1), namely

z* =1z — VAL (2)
We can then make a backward-Euler approximation of the total derivative,

7fn—|—1 _ * tn
ur(x,t”“) ~ U’(m: )At u(x ) ) (3)

Incorporating (2) and (3) into a centered implicit finite-difference method (FDM) for (1),
in the interior we have the finite-difference Eulerian-Lagrangian method (FDELM)

Ut - U (x3) UM 207 UM
At + D A,’L‘2 = fz * I (4)

where U is the FDELM approximation to u, U = U(z;, t"*1), and fI'' = f(ay, t"11).
Let 62U; = U;_1 — 2U; + U, denote the second spatial difference operator and I the
identity operator, and rewrite (4) in the form

At 2 n+1 N[ % n+1
(1= Dos®2) U = Un(a) + AtfrH. (5)
Complete specification of the interior FDELM (5) requires evaluation of the solution at
the old time level, U™(x}) = U™(xz; — VAt). Because x; does not lie at a node in general
(see Figure 1), some form of interpolation or the equivalent is needed.

Let C'r denote the Courant number,

Cr =VAt/Az, (6)

which is the number of cells traversed by advection in one time step. For definiteness,
assume that Cr > 0, and denote its integer and fractional parts by [Cr| and (Cr),

respectively. The simplest evaluation of U™(z}) is by linear interpolation,

U"(z7) =U"(z; — CrAz) = (1 — (Cr) UL + (CT)ULL 16711 (7)

Consider the case 0 < Cr <1 ([Cr] =0, (Cr) = Cr), substitute (7) into (5), and use (6)
to obtain

At ur-ur
I _ D 2) 77.—{—1 A 7 1—1 — n A 71—}—1_
(1= D) Ut AV L2 = U7+ AP (8)



in (8) we have precisely a first-order explicit upwind FDM in the advection term. This
shows that: For 0 < Cr < 1, the FDELM (5) reduces to the first-order explicit upwind
FDM (8). This method is known to be numerically dispersive.

To quantify the numerical dispersivity of (8), rewrite it in the form of a second-order
centered FDM plus a numerical dispersion term [1]:

At 0y At
I D8 UM 4 AtV ZHL IS D S G2 = U At
(1-Dopo) U+ aev =t SO = U + AL, (9)

where we have determined the numerical dispersivity

Dipum = VAZ/2. (10)

3. DISCUSSION

It is possible for the FDELM (5) to be less dispersive and more accurate with larger time
steps, Cr > 1. In such a case, in a time step the solution is advected [Cr| cells without
dispersion, then is evolved by the upwind FDM to complete the time step. Because fewer
interpolations (upwind steps) are needed for a given simulation time as the time step is
increased, the resulting U is less dispersed. This effect is balanced by increasing errors
in the physical dispersion approximation and the source term as At increases, so that it
is plausible to seek an “optimal time step” that minimizes the sum of the advective and
dispersive errors [2]. This example, and others similar to it, appear to be the reason for
the “folklore” mentioned in the abstract and introduction.

Within the framework of (5), numerical dispersion can be avoided by a form of quadratic
interpolation, as proved in [3]. There a second-order error estimate was demonstrated, a
consequence of which is that first-order numerical dispersion must be absent. Rather than
pursuing that line of reasoning further, here we will consider finite-volume ELMs that can
alleviate the numerical dispersion in a systematic way that is relatively straightforward
to understand.

Neglecting the physical dispersion in (5), the identity operator is applied to U"*!, and
an interpolation operator to U™. The net effect is that the solution U™*! will be some type
of weighted average of U”. With higher-order interpolation as in [3], negative weights will
be necessary if numerical dispersion is to be avoided, creating the potential for spurious
oscillations. Nonlinear interpolators that combine linear and quadratic techniques or
other combinations, such as slope limiters, can be used [4]. These are more difficult
to formulate in multiple dimensions and near boundaries. In ELMs that often reach
to or across boundaries in determining the backtracked point z* in (2), we have found
it natural and advantageous to modify the treatment of the left-hand side of (5), rather
than the right-hand side. This will be described in the context of a finite-volume Eulerian-
Lagrangian localized adjoint method (FVELLAM) [5,6].

4. FINITE-VOLUME ELLAM

The Eulerian-Lagrangian localized adjoint method (ELLAM) [7] uses space-time finite
elements oriented along the 7 directional derivative of (1), generalizing ELMs in a mass-
conservative way that systematically treats general boundary conditions. This is one
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Figure 1. An FVELLAM space-time cell.

of many possible settings for the ensuing discussion, but seems to provide some insight
on possible treatments of numerical dispersion. The FVELLAM uses space-time test
functions that are characteristic (indicator) functions of space-time subdomains oriented
along 7. This will be described briefly here to set the stage.

As in Figure 1, define the cell C; = [z;_1/2, Ziy1/2] at the new time level ¢!, and its
backtracked image C; = [z} 5, 7},, 5] at t", and the space-time cell Q7! that consists
of all points between them. A discrete interior FVELLAM equation (we do not consider
boundary issues here) is obtained by integrating (1) over Q?*! in space and time, or
equivalently by multiplying (1) by the characteristic function of Q™' and integrating
over the whole space-time domain. In the integration, note that the measures dzr dt and
dzx d7 are the same, so that we can think of “time” integration in the 7 direction instead
of t. So doing, we obtain

/Q?H u, dr dx — /Q?H Dy, dox dr = /Q?+1 fdzdr, (11)
and integrating in 7 and x, respectively, in the first two terms of (11),

tn+1

[ @ et D [ alaia = VE = 1),7) = el ~ VI - 1), 7] dr

i—1/2

= / s u(x*) dz* + / fdzdr. (12)
z* Qntt

i—1/2 i
The FVELLAM is obtained by choosing approximations U™ and U™ for u™ and u"*!,
and numerical integration rules in (12). We use a backward-Euler approximation of the
time integrals, so that (12) is approximated by

Tit1/2 n n n
| U @) de + DALY, — (U

i—-1/2

7L Zit1/
_ / PO e et A [
T

* .
i—1/2 Ti—1/2

" (z) da. (13)

The crux of our discussion is the evaluation of the U™*! integral on the left-hand side of
(13) and the U™ integral on the right-hand side.
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Figure 2. Area showing value of left-hand-side U™"! integral.

4.1. U™ integral
In a finite-volume method, it is customary to think of the solution U"*! as piecewise-
constant, i.e., constant on each spatial cell C;. This choice would lead to (5), and hence
to the same numerical dispersion noted there. Instead we view U™'! as piecewise-linear,
interpolated between nodes x;. The U™*! integral in (13) is then the area depicted in
Figure 2, which is ) ; ) )
Ti+1/2
/x // U™\ (2) do = A (§U{”§1 + U+ gU;l:;) — Az (1 + 555) Ut (14)
In comparison with (5), the weights 1/8, 3/4, 1/8 in (14) “unlump” the left-hand side
of (13). If we approximate U, by a difference quotient and f"™! by a piecewise-constant
function, we can write (13) in the form analogous to (9),

1 A.IQ At $Z+1/2
Az (1-(D-222) =242 U.”+1=/ U™ (2*) da* + AzAtfrH. 15
o= (D557 ) et Ut = [ Uy e+ A (13
We see that unlumping has introduced in (15) a negative numerical dispersivity
1 Az?
Dy = —=——. 16
8 At (16)

4.2. U™ integral

The key to alleviating numerical dispersion in FVELLAM is to balance the negative
dispersivity of unlumping with positive dispersivity in the evaluation of the U" integral
in (13). The unlumping has created “room” for a weighted average, or equivalently a
numerical integration, in the U™ integral to be non-dispersive in the end. The following
discussion is directed toward achieving the desired balance.

For the simple problem considered here, exact integration is possible, evaluating U™ (z*)
as in (7) in terms of the Courant number Cr. For 0 < Cr <1/2, CF = [z]_} 5, 7711 /5] C
[%;_1,%i41], so that a single formula in terms of U, U, and U, is applicable. A
complementary formula covers the case 1/2 < Cr < 1, and simple shifts incorporate the
integer part [Cr]. For 0 < Cr < 1/2, straightforward algebra yields

LITSYT RN .« 1 Cr Cr? n (3 2) n
/z Ut(z*)dx* = Afv<<8+ 5 T 2) i1t 7 Cr* | U]

"
i—1/2
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For Cr = 0, the weights 1/8, 3/4, 1/8 reappear, properly balancing the left-hand side. In
practice, numerical integration will be necessary, so we seek a quadrature formula that
balances well over a range of Courant numbers.

To conserve global mass in the U™ integral, in general it is necessary to evaluate the
integral with a forward-tracking procedure [8,5]. Quadrature points are regularly dis-
tributed at t", hence integrate the total mass exactly. Each point is tracked forward to
t"*1 and if it lands in C; = [z;_, /2, Tit1/2], its mass is then contributed to the integral
over C; = [x]_y 5,2} ,1/5]. With discontinuous characteristic functions as in Figure 1, the
numerical integral can be changed greatly by small changes in Cr. For example, with
quadrature points x;_1, T;—1/2, Ti, Tit+1/2, Tit+1 €ach carrying mass (domain length) Ax/2,
the U™ integral in (13) will be approximated by Az(1/4 U, + 3/4 UP) if Cr is small
and positive, but by Az(3/4 U +1/4 U},,) if Cr is small and negative. This discontin-
uous sensitivity will yield unacceptable results in practice, so for numerical purposes it is
necessary to modify the integral with a continuous smoothed test function:

/ U (0%) d / U™ (") Wi (2™, £*) da”, (18)

i-1/2
where W;(z*, t") is a continuous approximation of the discontinuous characteristic function
of Cf. A natural first choice is to take W;(z, ") to be the piecewise-linear hat function
equal to 1 at z; and 0 at all other nodes, and let W;(x*, t") = W;(x, t").

The piecewise-linear W; makes the integrand on the right-hand side of (18) piecewise-
quadratic. If integrated exactly, it will produce weights of 1/6, 2/3, 1/6 (the weights
of Simpson’s rule) for Cr = 0. These do not match the desired 1/8, 3/4, 1/8. In
a manner analogous to (16), a right-hand-side D,,,,, = 1/6 Az?/At results, hence an
overall numerical dispersivity
1 1) Ag? 1 Ax?

8

Do = (5 ~5) A =31 Ar 19)

For fixed Az and small At, results will be excessively dispersed.

Thus, if W; is used, we must integrate approximately in a fashion that restores the
weights 1/8, 3/4, 1/8 of the exact non-W; integral for the case Cr = 0. Comparing
Figure 3 to the exact non-W; area in Figure 2, the shaded areas are the same, and the
shaded area in Figure 3 would be obtained from the trapezoidal rule, with W;(z; ) = 0,
Wi(wiz1y2) = 1/2, Wi(z;) = 1, Wi(%i4172) = 1/2, and Wj(x;41) = 0. For 0 < Cr < 1/2
with the trapezoidal rule, we have

Lo . gk 1 3 n 3 Cr\.., 1 Cry,,,
/0 U™ (2 Wi(z*, %) dz* =~ Ax((8+4CT>Ui_1+(4 )U (8 4>UZ+1)
T 1)

by (17). Analogous to (19), the overall numerical dispersivity is

! 1, .\ Az VAz V2AL
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Figure 3. Trapezoidal rule to determine correct area, Cr =0, NS = 2.
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Figure 4. Trapezoidal rule to determine correct area, C'r =0, NS = 4.

Unlike (19), as At — 0 the dispersivity in (21) has a finite limit V Az /4, which is
half of the numerical dispersivity of upwinding in (10). Note that the trapezoidal rule is
calculated on a mesh of size Az/2, compared to upwinding on size Az in (8).

Numerical results were reported in Problem 1 of [5] for a test case with V' = 25, D = 2.5,
Az =2, At = 0.001 (cell Péclet number Pe = VAz/D = 20, Cr = 1/80), L = 250, final
time 2. For these values, (21) gives Dyym = 12.2, hence the total dispersivity of 14.7 is 5.9
times the physical dispersivity. Then the numerical front width should be about /5.9 ~
2.4 times the analytical front width. The widths between 95% and 5% concentration in
the numerical and analytical solutions were 14Ax and 6Az, respectively. For the same
data except that At = 0.01 (Cr = 1/8), hence Dy = 9.375, D + Dypym = 4.75D,
V4.75 = 2.2, the numerical and analytical front widths were 10Ax and 5Az, respectively.
This indicates that the analysis explains the dispersivity behavior very well.

As suggested by the comparison between (21) and (10), it is possible to reduce the
dispersivity by using the trapezoidal rule on a finer set of quadrature points. Let NS be
the number of subintervals in the cell C;; in Figure 3, NS = 2. Figure 4 shows the case
NS = 4. The exact area will be obtained as shown, if the values Wj(z;_1) = Wi(xi—3/1) =



0, Wiwi—1y2) = 1/2, Wi(xiz1ya) = Wilxi) = Wi(@iy174) = 1, Wi(Ziy1y2) = 1/2, and
Wi(@iys/a) = Wi(ziz1) = 0 are used (this is depicted in Figure 4 of [5]). Thus, instead of
a hat function, WW; in this case changes linearly from 0 to 1 on [2;_3/4, %;_1/4], and from 1
to 0 on [Zi1/4, Tivs/a). A development similar to (20) concludes that
2 2
D, = (10 1Cr2) Az VAz V At . VAz
At 8 2

05 as At — 0. (22)

More generally, for any even value of NS, we have Wi(z;_1/2) = Wi(xi112) = 1/2,
W; =1 at all quadrature points in between, W; = 0 at all quadrature points outside, and
W; is interpolated linearly between quadrature points. With these specifications, D,
tends to the limit VAz/2NS as At — 0. Thus, with denser trapezoidal-quadrature
points, numerical dispersivity can be made very small, even with small Courant number.

5. CONCLUSIONS

The observed numerical dispersion in Eulerian-Lagrangian methods (ELMs), particu-
larly with small time steps, is not an intrinsic feature of ELMs. Rather, it is a result
of formulations whose mass matrix is lumped, as is typical for finite differences. With
an unlumped mass matrix, and careful balancing of it with the integration rule for the
old-time-level mass, one can design ELMs that exhibit minimal numerical dispersion for
any Courant number, large or small.
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